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Abstract

The objective of this study was to determine reduction of Salmonella in biofilms by essential oils. Biofilm
formation of 15 Salmonella isolates from conventional swine farm environment was evaluated by 96-well
microtiter plate crystal violet and minimum biofilm eradication concentration (MBEC) assays. Only one of the
15 isolates was a strong biofilm producer as classified by crystal violet assay. All Salmonella isolates formed
biofilm on MBEC assay. The curli expression was robust among strains S322 and S435 (Salmonella Infantis),
S644, S777, S931, S953, and S977 (Salmonella Typhimurium) as observed by Congo red dye binding assay.
The cell hydrophobicity varied with strains and growth phase of the strain; however, there was no significant
difference in hydrophobicity of these strains. Natural antimicrobials were evaluated with MBEC assay for their
bactericidal efficacy in reducing Salmonella in biofilms. Cinnamaldehyde and sporran at 1000 ppm significantly
reduced Salmonella in biofilms. The bactericidal effect of these antimicrobials increased with their concen-
trations. Salmonella were reduced by 6 log CFU from their initial populations of 7–7.5 log CFU/cm2 when
2000 ppm concentration of these antimicrobials were used. Salmonella were undetectable when 3000 ppm of
cinnamaldehyde or sporran was used. Natural antimicrobials such as cinnamaldehyde and sporran can be used
to reduce Salmonella in biofilms.

Introduction

In the United States, nontyphoidal Salmonella alone is
responsible for 1 million foodborne illnesses, 19,000

hospitalizations, and 400 deaths each year (Scallan et al.,
2011). Salmonella is frequently associated with outbreaks of
human illnesses due to consumption of fresh produce and
meat (Pakalniskiene et al., 2009; CDC, 2010; Scallan et al.,
2011). Environmental isolates of Salmonella can form bio-
film on produce and abiotic surfaces as a defensive mecha-
nism to overcome the adverse environmental conditions
(Patel et al., 2013; Yaron and Romling, 2014).

Biofilm is an organized group of bacterial cells that has
ability to attach to biotic or abiotic surfaces (Costerton et al.,
1999). Cell surface hydrophobicity and specific appendages,
including fimbriae, curli, and outer membrane proteins, can
influence bacterial attachment to surface (Goulter et al.,
2009). Studies have shown association of curli expression,
cellulose production, and bacterial hydrophobicity for ef-
fective attachment and biofilm production by Escherichia

coli O157:H7 and Salmonella enterica on biotic and abiotic
surfaces (Saldaña et al., 2009; Patel et al., 2011, 2013).

Biofilm forming Salmonella may persist for longer duration
on food contact surfaces and subsequently cross-contaminate
food. Furthermore, higher antimicrobial concentrations and
effective treatment measures will be required to remove those
biofilm forming Salmonella (Kroupitski et al., 2009; Soni
et al., 2013). Ineffective antimicrobial concentrations may
lead to development of antibiotic-resistant Salmonella that is
even more hazardous from public health and food safety
perspective. Therefore, it is important to evaluate the efficacy
of alternative antimicrobials for removing Salmonella in
biofilm.

Chlorine and other acid-based chemical sanitizers have
been used to remove enteric pathogens on food equipment
surfaces (Bodur and Cagri-Mehmetoglu, 2012; Wang et al.,
2012). Effectiveness of chlorine varies with its chemical and
physical state, treatment conditions, and organic residues on
fresh produce. Furthermore, reaction of chlorine with water
containing organic matter results in harmful byproducts such
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as chloramines and trihalomethanes (Dychdala, 2001; Lopez-
Galvez et al., 2010). Chemical sanitizers such as peracetic
acid, chlorhexidine gluconate, benzalkonium chloride, and
other quaternary ammonium compounds have been used;
however, 5–7 log reduction of enteric bacteria is difficult with
these sanitizers (Wong et al., 2010; Steenackers et al., 2012;
Corcoran et al., 2014). Due to these limitations of sanitizers,
advent of antimicrobial resistance of foodborne pathogens,
and consumer preference for natural ingredients for their
health benefits, there is a need for evaluation of natural an-
timicrobials as an alternative to chemical sanitizers (Lee
Wong, 1998; Condell et al., 2012). Sporran, a proprietary
mixture of eugenol, thymol, and rosemary extract and cin-
namaldehyde have significantly reduced Salmonella on
spinach, lettuce, and in soil (Yossa et al., 2011, 2012; Yossa
et al., 2013). Zhang et al. (2014) reported inhibitory activity
of natural antimicrobials against biofilm forming Salmonella
in microtiter plate assay. In this study, we have used mini-
mum biofilm eradication concentration (MBEC) assay to
determine the bactericidal efficacy of antimicrobials in kill-
ing Salmonella in biofilms. The objective of this study was to
mitigate the biofilm forming swine environmental isolates of
Salmonella by cinnamaldehyde and sporran.

Materials and Methods

Salmonella strains

Fifteen Salmonella strains: Salmonella Derby (2), Salmo-
nella Infantis (4), and Salmonella Typhimurium (9) of con-
ventional swine farm environment (soil and lagoon) origin
were obtained from North Carolina State University (Table 1).
These strains were isolated as part of a longitudinal study
conducted on 30 conventional farms in North Carolina. The
details of isolation, antimicrobial susceptibility profiles, and
their phenotypic and genotypic characterizations have been
reported previously (Keelara et al., 2013, 2014).

Biofilm formation, hydrophobicity, and curli expression

Salmonella strains were evaluated for biofilm formation by
96-well microtiter plate crystal violate assay using four
growth media: full-strength and diluted (10%) Luria-Bertani

(LB) and Tryptic Soy Broth (TSB) as described by Patel and
Sharma (2010).

Hydrophobicity assay was determined using bacterial ad-
herence to hydrocarbons (BATH) assay as described by Li
and McLandsborough (1999). Percent hydrophobicity was
calculated as ratio of the absorbance of the bacterial assays to
the control.

Overnight cultures of individual Salmonella strains grown
in TSB were streaked on tryptone agar supplemented with
Congo red (40 mg/mL) and Coomassie brilliant blue (20 mg/
mL) (Romling et al., 2003), and incubated at 22�C and 37�C
for 48 h to determine curli expression. Curli expressing Sal-
monella were identified by typical red colonies on agar.

Effect of antimicrobials on Salmonella
in biofilms formed on MBEC pegs

A 22 mL of overnight grown culture adjusted to 5.5 log
CFU/mL cell density in 10% LB without salt (LBNS) was
transferred to the trough of the MBEC� plate (Innovotech,
Inc., Edmonton, Canada), and then, the trough plate was
covered with the peg lid cover. Plates were incubated at 22�C
for 48 h on rocking table with the angle of the rocking be-
tween 9� and 16� of inclination. After incubation, biofilm
cells were determined by removing all eight pegs from first
column of MBEC plate using sterile pliers and immersed in
the respective wells of rinse plate containing PBS. Rinse plate
was sonicated for 15 min in an ultrasonic cleaner (Branson
Ultrasonic Corporation, Danbury, CT). After sonication, se-
rially diluted aliquots of the biofilm rinsates were spot plated
(8 spots of 10 lL each) on XLT4 agar. Colonies from each
spot were counted following incubation at 37�C for 24 h.

A 96-well microtiter plate was set as an antimicrobial
challenge plate to determine the antimicrobial effect of nat-
ural antimicrobials. The wells of last column were filled with
200 lL LB (control) and remaining column wells were filled
with 200-lL of 1000, 2000, 3000, 4000, and 5000 ppm
concentrations of cinnamaldehyde (Sigma-Aldrich, St.
Louis, MO) and sporran (EcoSmart Tech, Alpharetta, GA), or
5 ppm of chlorine (Clorox, Oakland, CA). Biofilm pegs with
Salmonella population were exposed to the challenge plate
containing antimicrobials for 30 min at 22�C. After incuba-
tion, peg lids were rinsed in a 96-well rinse plate containing
200 lL PBS and then neutralized in a neutralizing agent
medium for 2 min. After neutralization, Salmonella in biofilm
pegs were dislodged by sonication for 15 min in a 96-well
microtiter recovery plate containing 200 lL PBS. Serially
diluted suspensions from wells of each column of recovery
plate were spot plated (8 spots of 10 lL each) on XLT4 agar
and incubated at 37�C for 24 h to determine surviving Sal-
monella populations in antimicrobial-treated biofilm pegs.

Statistical analysis

A split-plot analysis of variance (ANOVA) model was used
for surviving Salmonella populations in biofilms (log CFU/
cm2) using a negative binomial distribution and logit link
function (SAS 9.4, Cary, NC) with whole plot being plate and
subplot being well within plate. The effects of Salmonella
source of origin, Salmonella strains, and their combinations on
biofilm formation were analyzed. Pairwise means comparisons
used the Royen–Tukey–Kramer multiplicity adjustment to
maintain experimentwise a = 0.05 (SAS 9.2, Cary, NC).

Table 1. Salmonella Serotypes Isolated

From Conventional Swine Farm Environment

Strain ID Serotype Source

1 S322 Salmonella Infantis Soil
2 S421 Salmonella Typhimurium Soil
3 S435 Salmonella Infantis Lagoon
4 S481 Salmonella Typhimurium Lagoon
5 S643 Salmonella Infantis Lagoon
6 S644 Salmonella Typhimurium Soil
7 S657 Salmonella Derby Lagoon
8 S777 Salmonella Typhimurium Lagoon
9 S931 Salmonella Typhimurium Soil

10 S948 Salmonella Typhimurium Lagoon
11 S953 Salmonella Typhimurium Lagoon
12 S977 Salmonella Typhimurium Lagoon
13 S1013 Salmonella Derby Lagoon
14 S1214 Salmonella Typhimurium Lagoon
15 S1238 Salmonella Infantis Lagoon
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Results

Crystal violet biofilm assay

Most Salmonella strains formed biofilms on polystyrene
96-well microplates. A cutoff value (three standard devia-
tions above the mean optical density of the negative controls)
was used for classifying biofilm strength of Salmonella in
growth media. Salmonella strains were classified as negative
(2), weak (three strains), moderate (eight strains), and strong
(one strain) biofilm producers according to classification
suggested by Stepanovic et al. (2000). In general, these
Salmonella strains formed stronger biofilms in full-strength
LB and TSB media than in corresponding diluted media.
Biomass produced by eight Salmonella strains grown in full-
strength LB (0.13–0.33) was significantly higher ( p < 0.05)
than in diluted LB (0.07–0.20) (Table 2). Similarly, seven of
15 Salmonella strains grown in full-strength TSB (0.16–0.34)
produced significantly more biomass than in diluted TSB
(0.11–0.25). Biofilm formation varied with the Salmonella
serotypes. Four of the nine Salmonella Typhimurium strains
were either weak on nonbiofilm formers. All strains of Sal-
monella Infantis were moderate biofilm producers, whereas
Salmonella Derby strain S657 was the only strong biofilm
producer.

Hydrophobicity

Hydrophobicity was characterized by adherence of bac-
terial cells to hydrocarbons, which contributes to the ability
of bacteria to attach to the biotic or abiotic surfaces. In this
study, 12 out of 15 Salmonella strains were hydrophobic in
nature. Percent hydrophobicity was diverse among strains
and different phases of growth cycle (Table 3). There was no
significant difference in percent hydrophobicity of Salmo-
nella strains in their log or stationary growth phase except for
strains S421, S481, S931, and S1214 (Table 3). Significantly
higher hydrophobicity of log-phase cultures was observed

with Salmonella strains S421 (20.2%) and S931 (20.1%)
compared with other Salmonella strains (Table 3). In sta-
tionary phase, strain S1214 showed significantly higher hy-
drophobicity (20.4%) than S1238 (7.4%), S948 (3.9%), S931
(8%), S481 (4.2%), and S421 (9.1%).

Curli expression

Salmonella strains were evaluated for their ability to pro-
duce curli fimbriae on Congo red agar at two different tem-
peratures (22�C and 37�C). Based on colony characteristics,
strains were classified as negative (5, colorless colonies),
weak curli producer (3, light pink colonies), and strong curli

Table 2. Biofilm Formation of Salmonella Strains by Crystal Violet Assay

Strains

Growth medium

LB (1:10) TSB (1:10) LB TSB

S322 0.21 – 0.03bcx 0.24 – 0.08bcdex 0.24 – 0.03cx 0.26 – 0.02bx

S421 0.14 – 0.02dex 0.17 – 0.00fx 0.16 – 0.01dx 0.18 – 0.01cx

S435 0.23 – 0.06bcy 0.30 – 0.07ax 0.25 – 0.03cy 0.30 – 0.04abx

S481 0.18 – 0.02cdy 0.22 – 0.04defy 0.30 – 0.06abcx 0.30 – 0.04abx

S643 0.20 – 0.02bcy 0.28 – 0.04abx 0.29 – 0.03abcx 0.31 – 0.04abx

S644 0.09 – 0.01efx 0.11 – 0.01gx 0.11 – 0.00efx 0.14 – 0.01cdx

S657 0.33 – 0.09ax 0.25 – 0.06abcdy 0.29 – 0.04abcxy 0.35 – 0.01ax

S777 0.14 – 0.02dey 0.20 – 0.01efx 0.15 – 0.01dexy 0.16 – 0.01cdxy

S931 0.09 – 0.01efy 0.21 – 0.02defx 0.17 – 0.06dx 0.18 – 0.04cx

S948 0.07 – 0.00fz 0.11 – 0.01gyz 0.13 – 0.01defxy 0.16 – 0.01cdx

S953 0.20 – 0.01bcz 0.27 – 0.02abcy 0.32 – 0.03abx 0.34 – 0.02ax

S977 0.20 – 0.01bcy 0.22 – 0.04cdefy 0.33 – 0.03ax 0.31 – 0.06abx

S1013 0.08 – 0.00fz 0.12 – 0.01gyz 0.13 – 0.01defxy 0.18 – 0.01cx

S1214 0.20 – 0.03bcy 0.23 – 0.03bcdefy 0.31 – 0.04abx 0.31 – 0.03abx

S1238 0.24 – 0.03by 0.23 – 0.03bcdefy 0.27 – 0.02bcxy 0.32 – 0.05ax

Results are mean values and standard deviation of three replicates.
xyzMeans followed by different letters in a same row are significantly different ( p < 0.05).
abcdefMeans followed by different letters in a same column are significantly different ( p < 0.05).
LB, Luria-Bertani; TSB, Tryptic Soy Broth.

Table 3. Hydrophobicity of Salmonella Strains

by Bacterial Attachment to Hydrocarbon Assay

Strain ID

% Hydrophobicity

Log phase Stationary phase

S322 10.61 – 3.64bcdx 5.66 – 0.27cdex

S421 20.21 – 4.77ax 9.12 – 3.41bcy

S435 9.51 – 6.07cdx 5.23 – 5.22cdex

S481 14.70 – 3.76bx 4.29 – 3.68cdefy

S643 10.13 – 1.20bcdx 5.21 – 0.82cdex

S644 10.32 – 2.20bcdx 12.80 – 3.88bx

S657 7.56 – 6.17dex 3.82 – 2.11defx

S931 20.16 – 5.03ax 8.09 – 1.80bcdy

S948 14.75 – 4.09bx 3.90 – 1.24defy

S1013 3.82 – 2.68efx 1.81 – 0.78efx

S1214 13.66 – 3.31bcy 20.48 – 5.64ax

S1238 13.24 – 3.11bcx 7.48 – 1.20cdy

Results are mean values and standard deviation of three
replicates.

xyMeans followed by different letters in a same row are
significantly different ( p < 0.05).

abcdefMeans followed by different letters in a same column are
significantly different ( p < 0.05).
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producer (7, dark pink colonies). All curli-negative strains,
Salmonella Derby (2), Salmonella Infantis (2), and Salmo-
nella Typhimurium (1), were isolated from lagoon. Strong
curli expressing Salmonella Typhimurium (5) and Salmo-
nella Infantis (2) were isolated from soil and lagoon. The
difference in colony characteristics of these strains incubated
at 22�C and 37�C was marginal except strain S1215 that was
curli-negative at 37�C and exhibited weak curli expression
at 22�C.

Antimicrobial activity of cinnamaldehyde and sporran
against Salmonella on MBEC biofilm pegs

Salmonella population in biofilm recovered from MBEC
pegs ranged from 6.63 to 8.05 log CFU/cm2. Most Salmo-
nella strains formed biofilm as evidenced by recovery of
significantly higher bacterial populations attached to MBEC
pegs (Table 4). There was no significant difference in biofilm
formation by Salmonella when compared within source (soil
and lagoon) and serotype except for Salmonella Typhimur-
ium (S644) from soil, which produced significant biofilm
(8.05 – 0.10 log CFU/cm2) among all the isolates.

Natural antimicrobials were used to remove Salmonella in
biofilms formed on MBEC pegs. Cinnamaldehyde and
sporran significantly reduced Salmonella populations in
biofilm and their antimicrobial effect increased with con-
centrations. Salmonella were undetectable (<0.73 log CFU/
cm2) when 3000 ppm cinnamaldehyde or sporran were used
(Table 4). Cinnamaldehyde and sporran at 2000 ppm reduced
( p < 0.05) Salmonella in biofilm by 6 log CFU from their
initial biofilm populations of 7–7.5 log CFU/cm2. The anti-
microbial effect of cinnamaldehyde varied with strains; four
Salmonella strains (S481, S644, S931, and S948) were un-
detectable at 2000 ppm concentration of cinnamaldehyde.
Cinnamaldehyde at lower concentration (1000 ppm) reduced
( p < 0.05) all Salmonella strains in biofilms except strains
S948 and S977. Likewise, a 1000-ppm sporran significantly
reduced Salmonella strains S644, S948, S977, and S1013 in
biofilms. Similar to natural antimicrobials, chlorine also
significantly reduced Salmonella by 1–3.43 log CFU/cm2 at
low concentrations (5 ppm) (Table 4) and to undetectable
levels at 25 and 50 ppm concentration (not shown).

Discussion

Bacteria in biofilm environment are resistant to commonly
used sanitizers and can contaminate food product. Therefore,
it is imperative to eradicate bacterial pathogens in biofilms. In
this study, we evaluated biofilm formation by environmental
isolates of Salmonella and subsequent removal of Salmonella
in biofilms by cinnamaldehyde and sporran. Studies have
reported that the farm environment plays an important role in
persistence and dissemination of Salmonella all along the
food chain (Keelara et al., 2013; Holvoet et al., 2014). In our
study, all Salmonella strains of lagoon origin (S481, S948,
S953, S977, S1013, and 1214) and three strains from soil
origin (S322, S421, and S644) formed stronger biofilms
( p < 0.05) in full growth media. However, it should be noted
that these strains were weak or moderate biofilm formers as
classified by Stepanovic et al. (2000). Our results are in
agreement with previous studies where enteric pathogens
formed biofilm when under stress or grown in media lacking

essential nutrients (Solomon et al., 2005; Patel et al., 2011).
Diluted growth media enhance the expression of promoter
agfD, which is involved in Salmonella spp. biofilm formation
(Romling et al., 2000; Gerstel and Romling, 2001). We ob-
served stronger Salmonella biofilm formation in TSB me-
dium than in LB medium. Weak biofilm formation in LB
medium could be attributed to interference of salt in ex-
pression of adhesive extracellular matrix as observed with
E. coli (Romling, 2005; Patel et al., 2011).

Most Salmonella strains were significantly hydrophilic at
log phase compared with stationary phase as observed pre-
viously (Patel et al., 2011). The relationship between hy-
drophobicity and biofilm formation is unclear. In the previous
study, E. coli O157:H7 strains 4406 and 4407 were hydro-
phobic in nature but formed poor biofilm (Patel et al., 2011).
We observed strong biofilm by MBEC assay by those Sal-
monella isolates (S777, S953, and S977), which were hy-
drophilic in nature. Bacterial hydrophobicity had a minimum
role in biofilm formation of Shiga-toxigenic E. coli (Rivas
et al., 2007). We suggest that biofilm formation by Salmo-
nella in our study may rely on conditions such as nutrient
availability, environmental stressors, and effectors for bio-
film formation (Reisner et al., 2006). Studies have reported
the role of curli expression and relationship with biofilm
formation in E. coli and Salmonella (Barnhart and Chapman,
2006; Saldaña et al., 2009; Patel et al., 2011, 2013). Curli
production varied among Salmonella strains, categorized as
strong, weak, and curli-negative isolates based on uptake of
dye. This variation in curli expression has been associated
with survival fitness of pathogens as observed in E. coli
O157:H7 (Carter et al., 2011; Macarisin et al., 2012). In the
previous study, a stronger curli expression was reported when
environmental isolates of E. coli O157:H7 were grown at
22�C than at 37�C (Macarisin et al., 2012, 2014). However,
we did not find any significant difference in curli production
by Salmonella isolates at different temperatures. In addition,
studies have reported both positive (Boyer et al., 2007; Patel
et al., 2011; Yaron and Romling, 2014) and negative corre-
lation (Rivas et al., 2007; Kim and Harrison, 2009) with
hydrophobic nature of E. coli isolates and biofilm formation.
Among all Salmonella strains, Salmonella Typhimurium
exhibited strong curli production and hydrophobicity, which
is alarming as these factors may influence biofilm formation
in Salmonella Typhimurium, one of the most commonly as-
sociated serotypes of foodborne outbreaks (Medalla et al.,
2013; Keelara et al., 2014).

Removal of Salmonella on equipment surfaces is chal-
lenging once it forms biofilm. Wong et al. (2010) evaluated
the susceptibility of 3- and 7-day-old Salmonella biofilm on
MBEC plate to chemical sanitizers. In their study, the age of
Salmonella biofilm did not influence the efficacy of disin-
fectants. Sodium hypochlorite (500 mg/L) or benzalkonium
chloride (0.2%) could not remove Salmonella biofilms in
CDC biofilm reactor (Corcoran et al., 2014). Chen et al.
(2015) observed the synergistic antimicrobial effect of le-
vulinic acid and SDS in removing up to 7.6 log CFU/mL of
Salmonella in biofilms. A chlorinated alkaline detergent
(Sanifoam�) was superior to 0.2% peracetic acid in removing
biofilm-forming Salmonella on poultry processing surfaces
(Ziech et al., 2016). Natural antimicrobials such as cinna-
maldehyde and sporran have shown antimicrobial activity
against various pathogens, including Salmonella and E. coli
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O157:H7 on biotic and abiotic surfaces ( Jia et al., 2011;
Yossa et al., 2013; Zhang et al., 2014; Liu et al., 2015). It is
suggested that the mechanism of these antimicrobials is due
to more than one mode of action. Cinnamaldehyde inhibited
amino acid decarboxylase and ATPase in Enterobacter
aerogenes and Listeria monocytogenes, respectively (Thor-
oski et al., 1989; Wendakoon and Sakaguchi, 1995). Clove
oil and thymol present in sporran inhibit amylase and pro-
tease activity in Bacillus cereus and increase ATP perme-
ability resulting in lethal damage to bacterial cell (Gill and
Holley, 2006). Role of carvacrol at sublethal concentration
(20 mM) in disruption of Salmonella biofilm formation has
been reported (Knowles et al., 2005). At lower concentra-
tions, essential oil may interfere with bacterial attachment to
equipment surface by reducing flagellar production or by
inhibiting quorum sensing (Nostro et al., 2007; Burt et al.,
2014). In preliminary studies, we observed marginal reduc-
tion of these pathogens at £500 ppm concentration of cin-
namaldehyde and sporran (data not shown). Treatment with
thyme oil, oregano oil, or carvacrol at 0.025% reduced up to
1.6 log Salmonella in biofilms after a 1-h exposure (Soni
et al., 2013). They observed complete removal of Salmonella
in biofilms at 0.05–0.1% concentrations of these antimicro-
bials. In our study, cinnamaldehyde and sporran at 3000 ppm
concentration reduced Salmonella in biofilms to undetectable
level (<6 log reduction). Cinnamaldehyde and sporran at
£1000 ppm has significantly reduced Salmonella on fresh
produce (Yossa et al., 2012, 2013). Four Salmonella Typhi-
murium strains were undetectable at lower concentrations
(2000 ppm) of cinnamaldehyde suggesting differences in
sensitivity of these isolates to cinnamaldehyde. In this study,
the need for higher concentrations of these antimicrobials for
complete removal of Salmonella in biofilms could be attrib-
uted to environmental fitness of Salmonella strains. Chlorine
is used at different concentrations ranging from 50 to
200 ppm in commercial processing facilities as a chemical
sanitizer to reduce microbial load on fresh produce (Cherry,
1999; Taormina and Beuchat, 1999). In our study, chlorine
significantly reduced Salmonella in biofilm at 25 and 50 ppm
concentrations.

Conclusions

Our study confirms that environmental isolates of Salmo-
nella form biofilm under unfavorable conditions, which
could facilitate their persistence and dissemination in the
farm environment and food chain. Natural antimicrobials
such as cinnamaldehyde and sporran are effective in reducing
Salmonella in biofilms. These natural antimicrobials at
higher concentrations can serve as an alternative to chemical
sanitizers toward meeting consumers’ preference for natural
interventions in the food system. Furthermore, natural anti-
microbials could overcome the potential concern of chlorine-
tolerant bacteria in water. This study provides evidence for
the role of natural antimicrobials in removing biofilms and
potential concerns to the overall cost–benefit analysis when
compared with chlorine.
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